实用的高中数学说课稿范文九篇
作为一名老师,时常要开展说课稿准备工作,说课稿是进行说课准备的文稿,有着至关重要的作用。说课稿应该怎么写才好呢?以下是小编帮大家整理的高中数学说课稿9篇,希望能够帮助到大家。
高中数学说课稿 篇1一.说教材
1.本节课主要内容是线性规划的意义以及线性约束条件、线性目标函数、可行域、可行解、最优解等概念,根据约束条件建立线性目标函数。应用线性规划的图解法解决一些实际问题。
2.地位作用:线性规划是数学规划中理论较完整、方法较成熟、应用较广泛的一个分支,它可以解决科学研究、工程设计、经济管理等许多方面的实际问题。简单的线性规划是在学习了直线方程的基础上,介绍直线方程的一个简单应用。通过这部分内容的学习,使学生进一步了解数学在解决实际问题中的应用,以培养学生学习数学的兴趣、应用数学的意识和解决实际问题的能力。
3.教学目标
(1)知识与技能:了解线性规划的意义以及线性约束条件、线性目标函数、可行域、可行解、最优解等概念,能根据约束条件建立线性目标函数。
了解并初步应用线性规划的图解法解决一些实际问题。
(2)过程与方法:提高学生数学地提出、分析和解决问题的能力,发展学生数学应用意识,力求对现实世界中蕴含的一些数学模式进行思考和作出判断。
(3)情感、态度与价值观:体会数形结合、等价转化等数学思想,逐步认识数学的应用价值,提高学习数学的兴趣,树立学好数学的自信心。
4.重点与难点
重点:理解和用好图解法
难点:如何用图解法寻找线性规划的最优解。
二.说教学方法
教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法:
(1)启发引导学生思考、分析、实验、探索、归纳。这能充分调动学生的主动性和积极性。
(2)采用“从特殊到一般”、“化抽象为具体”、“化静为动”的方法。这有利于学生对知识进行主动建构;有利于突出重点、解决难点;也有利于发挥学生的创造性。
(3)体现“等价转化”、“数形结合”的思想方法。这样可发挥学生的主观能动性,有利于提高学生的各种能力。
三.说学法指导
教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:观察分析、联想转化、动手实验、练习巩固。
(1)观察分析:通过引例让学生观察化旧知为新知,造成学生认知冲突。
(2)联想转化:学生通过分析、探索、得出解决问题的方法。
(3)动手实验:通过作图、实验、从而得出一般解题步骤。
(4)练习巩固:让学生知道数学重在运用,从而检验知识的应用情况,找出未掌握的内容及其差距。
四.说教学程序
1、导入课题: 由一个不等式组表示平面区域转化为在此平面区域内一二元一次数的最值问题,造成学生认知冲突。
3、导学达标之一:创设情境、形成概念
通过引例的问题让学生探索解决新问题的方法。
(设计意图:利用已经学过的知识逐步分析,学以致用,使学生经历数学知识的形成过程,从而提高学生数学的地提出、分析和解决问题的能力。)
然后老师逐步引导,动手实验,化抽象为直观。从而得到解决此类问题的方法,并对比引例给出相关概念:线性约束条件、目标函数、线性目标函数、线性规划、可行解、可行域、最优解。并能根据引例提炼线性规划问题的解法——图解法。
(设计意图:引导学生观察和分析问题,激发学生的探索欲望,从而培养学生的解决问题和总结归纳的能力。)
4.导学达标之二:针对问题、举例讲解、形成技能
例一:课本61页例3
(创设意境:,练习是使学生明白数学来源于实际又运用于实际,同时使学生进初步应用线性规划的图解法解决一些实际问题。)
6.巩固目标:
练习一:学生做课堂练习P64例4
(叫学生提出解决问题的方法,并用多媒体展示,并根据问题的实际意义,考虑取值范围。造成新的认知冲突,从而研究探索,得到整点最优解的一种求法。)
练习二:为了赚大钱,老张最近承包了一家具厂,可老张却闷闷不乐,原来家具厂有方木料90m3,五合板600m2,老张准备加工成书桌和书厨出售,他通过调查了解到:生产每张书桌需要方木料0.1m3、五合板2m2,生产每个书橱需要方木料0.2m3、五合板1m2,出售一张书桌可获利润80元,出售一个书橱可获利润120元。老张却不知如何安排?(电脑显示问题)
(设计意图:通过实际问题,激发学生兴趣,培养学生的数学应用意识,力求学生能够对现实生活中蕴含的一些数学模式进行思考和作出判断。)
7.归纳与小结:
小结本课的主要学习内容是什么?(由师生共同来完成本课小结)
(创设意境:让学生参与小结,引导学生对所学知识进行反思,有利于加强学生记忆和形成良好的数学思维习惯)
8.布置作业:
P64. 2
五.说板书设计
板书设计为表格式,这样的板书简明清楚,重点突出,加深学生对重点知识的理解和掌握,同时便于记忆,有利于提高教学效果。
高中数学说课稿 篇2各位老师:
大家好!
我叫***,来自**。我说课的题目是《古典概型》,内容选自于高中教材新课程人教A版必修3第三章第二节,课时安排为两个课时,本节课内容为第一课时。下面我将从教材分析、教学目标分析、教法与学法分析、教学过程分析四大方面来阐述我对这节课的分析和设计:
一、教材分析
1.教材所处的地位和作用
古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。它承接着前面学过的随机事件的概率及其性质,又是以后学习条件概率的基础,起到承前启后的作用。
2.教学的重点和难点
重点:理解古典概型及其概率计算公式。
难点:古典概型的判断及把一些实际问题转化成古典概型。
二、教学目标分析
1.知识与技能目标
(1)通过试验理解基本事件的概念和特点
(2)在数学建模的过程中,抽离出古典概型的两个基本特征,推导出古典概型下的概率的计算公式。
2、过程与方法:
经历公式的推导过程,体验由特殊到一般的数学思想方法。
……此处隐藏15745个字……学习法:学生通过分析、探索,得出对数函数的定义;
3、自主性学习法:通过实验画出函数图像、观察图像自得其性质;
4、反馈练习法:检验知识的应用情况,找出未掌握的内容及其差距。
四、教学过程分析
(一)、教学过程设计
1、创设情境,提出问题。
在某细胞分裂过程中,细胞个数y是分裂次数x的函数y=2x,因此,知道x的值(输入值是分裂次数)就能求出y的值(输出值为细胞的个数),这样就建立了一个细胞个数和分裂次数x之间的函数关系式。
问题一:这是一个怎样的函数模型类型呢?
设计意图
复习指数函数
问题二:现在我们来研究相反的问题,如果知道了细胞的个数y,如何求分裂的次数x呢?这将会是我们研究的哪类问题?
设计意图
为了引出对数函数
问题三:在关系式x=log2y每输入一个细胞的个数y的值,是否一定都能得到唯一一个分裂次数x的值呢?
设计意图
(1)、为了让学生更好地理解函数;
(2)、为了让学生更好地理解对数函数的概念。
2、引导探究,建构概念。
(1)、对数函数的概念:
同样,在前面提到的发射性物质,经过的时间x年与物质剩余量y的关系式为y=0.84x,我们也可以把它改成对数式x=log0.84y,其中x年夜可以看作物质剩余量y的函数,可见这样的问题在现实生活中还是不少的。
设计意图
前面的问题情景的底数为2,而这个问题情景的底数是0.84,我认为这个情景并不是多余的,其实它暗示了对数函数的底数与指数函数的底数一样有两类。
但是在习惯上,我们用x表示自变量,用y表示函数值。
问题一:你能把以上两个函数表示出来吗?
问题二:你能得到此类函数的一般式吗?
设计意图
体现出了由特殊到一般的数学思想
问题三:在y=logax中,a有什么限制条件吗?请结合指数式给以解释。
问题四:你能根据指数函数的定义给出对数函数的定义吗?
问题五:x=logay与y=ax中的x,y的相同之处是什么?不同之处是什么?
设计意图
前四个问题是为了引导出对数函数的概念,然而,光有前四个问题还是不够的,学生最容易忽略或最不容易理解的是函数的定义域,所以设计这个问题是为了让学生更好地理解对数函数的定义域。
(2)、对数函数的图像与性质
问题:有了研究指数函数的经历,你觉得下面该学习什么内容了?
设计意图
提示学生进行类比学习
合作探究1:借助计算器在同一直角坐标系中画出下列两组函数的图像,并观察各族函数图像,探求他们之间的关系。
y=2x;y=log2x y=( )x,y=log x
合作探究2:当a>0,a≠ 1,函数y=ax与y=logax图像之间有什么关系?
设计意图
在这儿体现“从特殊到一般”、“从具体到抽象”的方法。
合作探究3:分析你所画的两组函数的图像,对照指数函数的性质,总结归纳对数函数的性质。
设计意图
学生讨论并交流各自的而发现成果,教师结合学生的交流,适时归纳总结,并板书对数函数的性质)。问题1:对数函数y=logax( a>0,a≠1,)是否具有奇偶性,为什么?
问题2:对数函数y=logax( a>0,a≠1,),当a>1时,x取何值,y>0,x取何值,y<0,当0
问题3:对数式logab的值的符号与a,b的取值之间有何关系?
知识拓展:函数y=ax称为y=logax的反函数,反之,也成立,一般地,如果函数y=f(x)存在反函数,那么它的反函数记作y=f-1(x)。
3、自我尝试,初步应用。
例1:求下列函数的定义域
y=log0.2(4-x)(该题主要考查对函数y=logax的定义域(0,+∞)这一限制条件,根据函数的解析式求得不等式,解对应的不等式。)
例2:利用对数函数的性质,比较下列各组数中两个数的大小:
(1)、㏒2 3.4,log2 3.8;
(2)、log0.5 1.8,log0.5 2.1;
(3)、log7 5,log6 7
(在这儿要求学生通过回顾指数函数的有关性质比较大小的步骤和方法,完成完成前两题,最后一题可以通过教师的适当点拨完成解答,最后进行归纳总结比较数的大小常用的方法)
合作探究4:已知logm 4
设计意图
该题不仅运用了对数函数的图像和性质,还培养了学生数形结合、分类讨论等数学思想。
4、当堂训练,巩固深化。
通过学生的主体性参与,使学生深刻体会到本节课的主要内容和思想方法,从而实现对知识的再次深化。
采用课后习题1,2,3.
5、小结归纳,回顾反思。
小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。
(1)、小结:
①对数函数的概念
②对数函数的图像和性质
③利用对数函数的性质比较大小的一般方法和步骤,
(2)、反思
我设计了三个问题
①、通过本节课的学习,你学到了哪些知识?
②、通过本节课的学习,你最大的体验是什么?
③、通过本节课的学习,你掌握了哪些技能?
(二)、作业设计
作业分为必做题和选做题,必做题是对本节课学生知识水平的反馈,选做题是对本节课内容的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生的自主发展、合作探究的学习氛围的形成。
我设计了以下作业:
必做题:课后习题A 1,2,3;
选做题:课后习题B 1,2,3;
(三)、板书设计
板书要基本体现课堂的内容和方法,体现课堂进程,能简明扼要反映知识结构及其相互关系:能指导教师的教学进程、引导学生探索知识;通过使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。
五、评价分析
学生学习的结果评价固然重要,但是更重要的是学生学习的过程评价。我采用了及时点评、延时点评与学生互评相结合,全面考查学生在知识、思想、能力等方面的发展情况,在质疑探究的过程中,评价学生是否有积极的情感态度和顽强的理性精神,在概念反思过程中评价学生的归纳猜想能力是否得到发展,通过巩固练习考查学生对本节是否有一个完整的集训,并进行及时的调整和补充。
以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正。
谢谢!
文档为doc格式