平方差公式教学设计

时间:2024-07-01 20:30:14
平方差公式教学设计

平方差公式教学设计

作为一名人民教师,常常需要准备教学设计,教学设计是一个系统化规划教学系统的过程。怎样写教学设计才更能起到其作用呢?以下是小编为大家整理的平方差公式教学设计 ,欢迎大家分享。

平方差公式教学设计 1

教学目的

进一步使学生理解掌握平方差公式,并通过小结使学生理解公式数学表达式与文字表达式在应用上的差异.

教学重点和难点:公式的应用及推广.

教学过程:

一、复习提问

1.(1)用较简单的代数式表示下图纸片的面积.

(2)沿直线裁一刀,将不规则的右图重新拼接成一个矩形,并用代数式表示出你新拼图形的面积.

讲评要点:

沿hd、gd裁开均可,但一定要让学生在裁开之前知道

hd=bc=gd=fe=a-b,

这样裁开后才能重新拼成一个矩形.希望推出公式:

a2-b2=(a+b)(a-b)

2.(1)叙述平方差公式的数学表达式及文字表达式;

(2)试比较公式的两种表达式在应用上的差异.

说明:平方差公式的数学表达式在使用上有三个优点.(1)公式具体,易于理解;(2)公式的特征也表现得突出,易于初学的人“套用”;(3)形式简洁.但数学表达式中的a与b有概括性及抽象性,这样也就造成对具体问题存在一个判定a、b的问题,否则容易对公式产生各种主观上的误解.

依照公式的文字表达式可写出下面两个正确的式子:

经对比,可以让人们体会到公式的文字表达式抽象、准确、概括.因而也就“欠”明确(如结果不知是谁与谁的平方差).故在使用平方差公式时,要全面理解公式的实质,灵活运用公式的两种表达式,比如用文字公式判断一个题目能否使用平方差公式,用数学公式确定公式中的a与b,这样才能使自己的计算即准确又灵活.

3.判断正误:

(1)(4x+3b)(4x-3b)=4x2-3b2;(×)(2)(4x+3b)(4x-3b)=16x2-9;(×)

(3)(4x+3b)(4x-3b)=4x2+9b2;(×)(4)(4x+3b)(4x-3b)=4x2-9b2;(×)

二、新课

例1 运用平方差公式计算:

(1)102×98; (2)(y+2)(y-2)(y2+4).

解:(1)102×98 (2)(y+2)(y-2)(y2+4)

=(100+2)(100-2) =(y2-4)(y2+4)

=1002-22=10000-4 =(y2)2-42=y4-16.

=9996;

2.运用平方差公式计算:

(1)103×97; (2)(x+3)(x-3)(x2+9);

(3)59.8×60.2; (4)(x- )(x2+ )(x+ ).

平方差公式教学设计 2

平方差公式是多项式乘法运算中一个重要的公式,是特殊的多项式与多项式相乘的一种简便计算。通过复习多项式乘以多项式的计算导入新课,为探究新知识奠定基础。在重难点处设计问题:“观察以上3个算式的特点和运算结果的特点,对比等号两边代数式的结构,你发现了什么?”让学生发现规律并尝试运用自己的语言来描述。问题提出后,学生能积极进行分组讨论、交流,各组小组长阐述自己小组讨论的结果。大多数的学生能找出规律,说出大概意思,但是无法用精准的语言完整的描述出来,语言表达无条理、含糊。针对这种情况,在以后的课堂教学过程中要注意加强对学生的逻辑思维能力和语言表达能力的培养。最后经过师生的共同努力,得出了平方差公式以及公式的特征。

在例题展示环节中,我通过2道例题的运算,训练学生正确应用公式进行计算,体会公式在简化运算中的作用。实践练习的设计,使学生从不同角度认识平方差公式,进一步加强学生对公式的理解。在运用公式时,学生基本掌握运用平方差公式的步骤:首先要判断算式是否符合平方差公式特征,然后再寻找算式中的a,b项,最后运用平方差公式运算。拓展延伸环节中,学生通过寻找算式中的a,b项,慢慢发现a,b项不仅可以代表数,也可以代表单项式、多项式等代数式,这样设计可以进一步深化学生对字母含义的理解。在学生独立完成练习和堂测中,经过巡视,我发现近三分之一的学生对较复杂的多项式不能准确找出a,b项,特别是b项代表多项式时,负数去括号时出错较多。

最后通过设计递进式的问题串,引导学生自己一步步总结出本节课所学的知识内容,从而培养他们的归纳总结和语言表达能力。

本节课采用学习小组讨论、交流的学习方式,让学优生带动学困生,整体教学效果良好,学生基本掌握平方差公式的运用,对于较复杂的a、b项的运算,在自习课上将加强练习。

平方差公式教学设计 3

一、教材分析

本节课选自人教版八年级上册第14章第二节内容,它是在学生已经掌握了多项式乘法之后,自然过渡到具有特殊形式的多项式的乘法,是从一般到特殊的认知规律的典型范例.对它的学习和研究,不仅给出了特殊的多项式乘法的简便算法,而且为以后的因式分解、分式的化简等内容奠定了基础,同时也为学习完全平方公式提供了方法.因此,平方差公式作为初中阶段的第一个公式,在教学中具有很重要地位,同时也是最基本、用途最广泛的公式之一.

二、学情分析

1.学生的知识技能基础:学生在前面的学习中,已经学习了整式的有关内容,并经历了用字母表示数量关系的过程,有了一定的符号感.经过一个学期的培养,学生已经具备了小组合作、交流的能力.学生刚学过多项式的乘法,已具备学习并运用平方差公式的知识结构,通过创造问题情境,让学生承担任务,在探究相应问题中,建立并运用公式,从而使拓展学生知识技能结构成为可能.通过实际问题的探究,学生已感受到多项式乘法运算的重要性,同时,具备了对式的运算基础“快”“准”的积极心理,学生已具备学习公式的知识与技能结构,通过新课程教学的实施,培养学生具有独立探索、合作交流的习惯.

2.学生活动经验基础:学生已熟练掌握了幂的运算和整式乘法,但在进行多项式乘法运算时常常会出现符号错误及漏项等问题;另外,数学公式中字母具有高度概括性、广泛应用性.

三、教学目标

1.知识目标:经历平方差公式的探索及推导过程,掌握平方差公式的结构特征并能熟练应用.

2.能力目标:运用公式进行简单的运算,获得一些数学活动的经验,进一步增强学生的符号感、推理和归纳能力及解决问题的能力.

3.情感目标:让学生经历“特殊到一般再到特殊”(即:特例─归纳─猜想─验证─用数学符号表示—解决问题)这一数学活动过程,积累数学活动的经验,体会数学的简洁美和数形结合的思想方法.培养他们合情推理和归 ……此处隐藏4121个字……可以是具体的数,也可以是单项式或多项式.

变式训练:见《学练优》本课时练习“课堂达标训练”第1题

【类型二】应用平方差公式进行简便运算

利用平方差公式计算:

(1)20xx×1923;(2)13.2×12.8.

解析:(1)把20xx×1923写成(20+13)×(20-13),然后利用平方差公式进行计算;(2)把13.2×12.8写成(13+0.2)×(13-0.2),然后利用平方差公式进行计算.

解:(1)20xx×1923=(20+13)×(20-13)=400-19=39989;

(2)13.2×12.8=(13+0.2)×(13-0.2)=169-0.04=168.96.

方法总结:熟记平方差公式的结构并构造出公式结构是解题的关键.

变式训练:见《学练优》本课时练习“课堂达标训练”第13题

【类型三】运用平方差公式进行化简求值

先化简,再求值:(2x-y)(y+2x)-(2y+x)(2y-x),其中x=1,y=2.

解析:利用平方差公式展开并合并同类项,然后把x、y的值代入进行计算即可得解.

解:(2x-y)(y+2x)-(2y+x)(2y-x)=4x2-y2-(4y2-x2)=4x2-y2-4y2+x2=5x2-5y2.当x=1,y=2时,原式=5×12-5×22=-15.

方法总结:利用平方差公式先化简再求值,切忌代入数值直接计算.

变式训练:见《学练优》本课时练习“课堂达标训练”第14题

【类型四】平方差公式的几何背景

如图①,在边长为a的正方形中剪去一个边长为b的小正形(a>b),把剩下部分拼成一个梯形(如图②),利用这两幅图形的面积,可以验证的乘法公式是______________.

解析:∵左图中阴影部分的面积是a2-b2,右图中梯形的面积是12(2a+2b)(a-b)=(a+b)(a-b),∴a2-b2=(a+b)(a-b),即可以验证的乘法公式为(a+b)(a-b)=a2-b2.

方法总结:通过几何图形面积之间的数量关系可对平方差公式做出几何解释.

变式训练:见《学练优》本课时练习“课堂达标训练”第9题

【类型五】平方差公式的实际应用

王大伯家把一块边长为a米的正方形土地租给了邻居李大妈.今年王大伯对李大妈说:“我把这块地一边减少4米,另外一边增加4米,继续原价租给你,你看如何?”李大妈一听,就答应了.你认为李大妈吃亏了吗?为什么?

解析:根据题意先求出原正方形的面积,再求出改变边长后的面积,然后比较二者的大小即可.

解:李大妈吃亏了,理由如下:原正方形的面积为a2,改变边长后面积为(a+4)(a-4)=a2-16.∵a2>a2-16,∴李大妈吃亏了.

方法总结:解决实际问题的关键是根据题意列出算式,然后根据公式化简解决问题.

三、板书设计

1.平方差公式

两数和与这两数差的积,等于它们的平方差.即(a+b)(a-b)=a2-b2.

2.平方差公式的运用

学生通过“做一做”发现平方差公式,同时通过“试一试”用几何方法证明公式的正确性.通过这两种方式的演算,让学生理解平方差公式.本节教学内容较多,因此教材中的练习可以让学生在课后完成。

平方差公式教学设计 8

教学目标

1.经历探索平方差公式的过程,会推导平方差公式;

2.能利用平方差公式进行简单的运算。

在探索平方差公式的过程中,发展学生的符号感和推理能力。在计算的过程中发现规律,并能用符号表达,体会数学语言的严谨与简洁。

激发学习数学的兴趣,鼓励学生自己探索,培养学生的合作意识与创新能力。

重点难点

重点

平方差公式的推导和运用

难点

平方差公式的结构特点和灵活运用。

教学过程

一、复习导入

1.回顾多项式乘多项式的法则。

2.创设情境:你能快速地口算下列式子的值吗?

(1);(2).

师生共同想办法,想到能否把数转化成较整的数?

变形成:,

再试试把它当成多项式乘法来算算,有什么发现?

继续用你发现的方法算算,,,成功了吗?

我们把这个有趣的结论整理并推广,就可以得到今天要学习的一个乘法公式,平方差公式。

二、新课讲解

探究新知

1.观察相乘的两个多项式有什么特点?运算的结果有什么特点?

讨论交流后总结出:两个数的和与这两个数的差的积,等于这两个数的平方差。

2.把式子里具体的数换成字母表示的数,结论还成立吗?

3.从上面的计算中你有什么发现呢?

引导学生发现对于不同形式的两个数,都有它们的和与它们的差的积都等于它们的平方差!用公式表示就是:,这里字母是任意形式的两个数。这个公式叫做平方差公式。

4.你能通过演算推导出平方差公式吗?

最终得到平方差公式:

平方差公式的理解应用

下列多项式乘法中,能用平方差公式计算的是_______________(填写序号)

(1);(2);(3);

(4);(5);(6).

学生分组讨论交流,归纳什么情况下可以使用平方差公式。通过讨论,对平方差公式的理解达到一个新的高度:所谓两数和、两数差,从多项式的角度来看,就是有一项相同(),有一项相反(和),只要相乘的两个多项式具备这样的特点,都可以用平方差公式计算。不难判断,上面的式子中(2)、(5)、(6)都可以用平方差公式计算。

三、典例剖析

例1运用平方差公式计算:

师生共同解答,教师板书。初学运用时要写清楚步骤。

例2运用平方差公式计算:

学生解答,关注学生是否理解平方差公式,能否正确识别乘法公式里的。

例3.计算:

学生解答,教师巡视,关注学生能否合理变形,灵活运用公式计算。

四、课堂练习

1.下面各式的计算对不对?如果不对,应怎样改正?

(1);

2.运用平方差公式计算:

(1);(2);

(3);(4).

3.计算:

(1);(2);

教师要注意发现学生的错误,组织学生对错误进行分析,对于第1题可以引导学生分析导致错误的原因。

五、小结

师生共同回顾平方差公式的结构特点,体会公式的作用,交流计算的经验。教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。

六、布置作业

P50第1、6题

《平方差公式教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式